
PMM U.S.S.R.,Vol.47,No.5,pp.579-588,1983 
Printed in Great Britain 

PERIOD IC SOLUTIONS OF SETS 

EQUATIONS WITH A 

OOZl-8928/83 $lO.OO+O.OO 
0 1985 Pergamon Press Ltd. 
UDC 517.9:531 

OF ORDINARY DIFFERENTIAL 
LARGE PARAMETER* 

V.V. SAZONOV 

The differential equationof theforced oscillations of a mechanical system 
with one degree of freedom is examined in the case when the system's 
natural frequency is much greater than the external one. It is shown 
that periodic solutions of such an equation exist, close to the periodic 
solutions of the corresponding degenerate equation. Theresultobtainedis 
generalized to the case of systems with several degrees of freedom. A 
system with cyclic coordinates acted on by external periodic forces 
whose frequency is much less than the natural frequencies of the system 
mentioned is examined. The existence of periodic solutionsof the equations 
of motion of such a system , close to the periodic solutions of the 
corresponding degenerate equations, is proved. 

1. Consider the scalar differential equation 

2" + IL' F (t, 2) = f (t, 2, i) (1.1) 

where p is a positive parameter , and F (t,s) and f(t,z,i)are periodic functions of t with 
period Tj 0. Let the equation F&z) = 0 have the T-periodicsolutionz = p(t). Wewillseek 
T-periodic solutions of Eq.(l.l), defined for fairly large p and close to the solution t = 

cp (t). We will assume that the functions F(t,2),f(t,z,a'),cp(t) are thrice continuously dif- 
ferentiable for O\< t < T and fairly small lz- cp(t)(,(z’- p’(t) 1 and 

Let 

eo = r/l +.Uab 

For an arbitrary eE(O,&) we consider the set 

I (e) = (p : p > 0, sh’ ob + sin' pb > et) 

This set is not empty. For a# 0 and 0 <e < Ishab lit is identical with the interval (0, t 
a)* ,and whena=O 

Theorem 1. For anye= ((J,&) positive numbers M,C, and C, exist such that for P>M; 
~LLE I(e), Eq,(l.l) has a unique T-periodic solution z* (t, W) satisfying the inequalities 

Cl I =+ (tt P) - P w I d - ,,a , l%‘(t.N-‘#‘Ml d$tO<f<T) 
Note. If a# 0, the quantities M,C, and C, can be chosen independently of e (but then 

M,C,,C,++a as a-+0). Having taken e <(&I ab I, we find that in this case the solution 
x,(f, IL) is defined for any W>M. If A(r)<O(O<t< F), then the existence of a T-periodic 
solution of Eq.(l.l), changing to cp(r) as p-+00, follows from the results in /l/. The case 
when p(f) vanishes at scme points of the segment [o,TJ requires a special investigation. 

Equation (1.1) can be interpreted as the equation'of forced oscillations of a mechanical 
system with one degree of freedom. The quantity of 2a can be taken as a generalized coef- 
ficient of friction of this system for the motion 
for certain values of p. 

t=cpIt). Resonance is possible in the system 
Such values are excluded from the analysis by the condition PEI(~). 

If a#O, this condition can be dropped by examining sufficiently large values of c. However, 
if ~~0, resonance can occur in the system on any segment of the p-axis, of length greater 
than db, sufficiently far from the origin. 

For example, the oscillations around the centre of mass of a solid with a strong perm- 
anent magnet in the external periodic magnetic field /2/ can be described by an equation of 
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form (1.1). For the equation studied in /2/, a = 0. The results of the numerical calcula- 
tions in this paper graphically demonstrate the occurrence of resonances for certain values 
of the large parameter. 

2. To prove Theorem 1 we make the change of variable (t, z)-+(r, Y) in Eq. (1.1): 
* 

t = s ~‘1’ (s) ds, Y = Lx - cp 04 (z))] exp (-& f c (s) ds - UT) 
0 0 

C(T) = P' (4 1 
--- df 0. v 0). cp’ (9) 
2pQ (f) Pfl' w at. 1 f=-O(T) 

where t =‘$(T) is the inverse of the first integral. Such a change is a modified Liouville 
substitution. In the new variables (1.1) can be written as 

Y" + 2UY' i- (Pa + 4') Y = fl ('c, Y, Y') + tL2F1 (t, Y) (2.1) 

Here the prime denotes differentiation with respect to z; the functions fl and F, depend 
periodically on r with period 2b 

The 
to 

fl 
and 
the 

are 
I Y' 

- F, &, 0) _ aF$’ ‘) _ 0 afl ‘;,” ‘) (2.2) 

above change of variable reduces the search for a T-periodic solution of Eq. (l.l), close 
p(t), to a search for a 2b-periodic solution of Eq.(l.l), close to the origin. 
By virtue of the smoothness conditions imposed on the functions F,f and cp, the functions 
and FL are continuously differentiable in r and thrice continuously differentiable in y 

Y' * Hence it follows from (2.2) that positive numbers h,,h,,M,,Ma and M~existsuchthat 
bounds 

Ifi (2, YP Y') - f1 (r, UT u') I < M1 I Y - u I + (2.3) 

Ma IY’ - u’ I ( I Y I + I IJ I + I Y’ I + I u’ I) 

IF,b,Y)--F1(T,U) I<~MSIY-ul(IYI+ Iu I) 

valid for all r, y, y’,u,u’ satisfying the inequalities 0<~72b, IY I<)Q, Iu I<h, 
I Q h,, I U’ I < h, . In particular, when u = u' = 0 and MI = MI + M& we have 

I fl bT, Y, Y') - fz (1, 0, 0) I < MI ! Y I + MQY” (2.4) 

I F, (7, Y) I Q Msya 

3. Consider the differential equation 

y” + by’ + ($ + aa) y = h (7) (3.1) 

where h(T) is a continuously differentiable 2b-periodic function. When sha ab+ sin’pb> 0 Eq. 
(3.1) has a unique 2b-periodic solution representable as 

(3.2) 

G (7, s) - - ,~_y&z.J@ 

,-&)=_- - 

h 1,e=--a*rp, z ‘2=-i 

Here G(~,s)is Green's function of the periodic boundary-value problem Y(O) -Y@b),Y'(O) = 
y’ (2b) for (3.1); in the expressions for G(T, 8) and G, (7%~) the upper sign is taken for 7Q.S 

and the lower one for r> a. The derivative of solution (3.2) can be found by the formula 

y’(~)=~~+- () 
* ac 7.8) h s ds 

t 

=~G(z,s)h’(s)ds 
0 0 

The number v(f)= max I/(T) I with 0 <r< 26 is called the norm of the function f(z),continuous 
on the segment IO, 2bl. Since 

2b 

max jG(z,s)Ids<K, s 0 n 
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KS shah 
ap {sh*d + sin*w 

the bounds 

(3.3) 

hold for the norms of solution (3.2) and of its derivative, valid both when as'0 as well 
as when a = 0. In the latter case the values of the coefficients containing a are found 
by passing to the limit as a+O. In particular, when a = 0 we have K = b/(p I sin yb I). 

we fix an arbitrary E E (0, CO) and we set N = sh ab/ae. Then, by sharpening inequalities 
(3.3), for pLEl(e), u> Ia I, we can write 

v (Y) B NP-4 (h), v (Y') < 2Nv (h) (3.4) 

Y (y) < tP Iv (h) + NV +')I, v (Y') < Np-4 (h’) (3.5) 

The resultant inequalities are meaningful for any a: if u=o, then N = b/E. However, if 

a# 0, then we can take N = I a 1-l. In this case inequalities (3.4) and (3.5) hold for any 

IL> IsI. In Section 4 the bounds (3.4), (3.5) are used without additional stipulations on 
the method of defining N and choosing p. 

4. The search for 2b-periodic solutions of Eq. (2.1) reduces to solving the periodic 
boundary-value problem for this equation on the segment IO,2bl, which in its turn is equi- 
valent to the system of integral equations 

zb 

Yj (z) = S, gj tTT 4 If1 ts* [/l fs)t I/Z 6)) 4 PapI (Sv Yl ($)I d.9 5 Lj (YIv YZ) (4.1) 

i = 1,2; g, (z, 4 = G (t, 4, g, (T, 4 = 8G (2, s)/at 

Here y, = y, yz = y’. We solve system (4.1) by the method of successive approximations. On the 
segment O<z< 2bwe construct a sequence of functions {y?'(r)}&, (j = 1,2), by setting 

yP) (%) z 0, #+I) = L, (vi”, yi”) (j = 1, 2; k = 0, 1, . . .) (4.2) 

Let us prove that when p is sufficiently large this sequence converges (in the sense of the 
norm v (.)) to the solution of system (4.1). First we will prove that for sufficiently large 
P 

v (YP') d &p-* d h,, v (yik') < QL-- <h, (k = 0, 1, . . .) (4.3) 

where B, and B, are certain positive numbers. Since 

1/jn(r)= ~~j(r.I)/l(O1O)ds (i=CZ) (4.4) 
0 

relations (4.2) for k>l can be represented as 

Y!'+')(T) = yj') (7) + 5 tj (T, 8) PI@. Y;~'(s),Y;")(s)) 3 -11(&o. 0) +c'F, (8, ye")] dr (i = 1.2) 
0 

We assume that v (gjtk)) < hj (j = 1, 2; k = 0, 1,. . .). Then on the strength of inequalities (2.4) and 
(3.4) we have 

v (111(r)) < D,p-* 9 v fd’)) d w-1 (4.5) 
D, = NV (% (7, O,O)/W, DI = D, $- v (fl (7, 0, 0)) 

With the aid of relations (4.4) and (4.5) we obtain the bounds 

v (Yy+")< V(Yj") + nj[M*v(p)+ pM~v* (y;k’)+M*v’(yp)J 

j=l, 2;n,=Np+,n,=2N 
We choose the numbers B,,E, from the conditions E1> D,,B,>D, and we set 

Then if inequalities (4.3) are satisfied for some k, then by virtue of (4.5) we have 

v (ytCk+')) B P-'(& + XP--') <&CL-*( h, 

v(Y,(~+~)) d P-' (S, + 29+-V 4 &P-K h, 
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Since inequalities (4.3) are satisfied when k=l, their validity follows for all k. 
Let us prove that the successive approximations (4.2) converge. On the strength of in- 

equalities (2.3) and (3.4) we have 

y (Y, (k+l) - Yf”‘) Q nj [KlV (Yi”’ - I/~“-“) + K*V (yik) - y$,k-“)] 

j - 1,2; K1= Ml -t pw [v (YP’) + v cyp-I’)] 

KS - Iw, [v (Y?) + v (Y!~)) + v (Y;~-~') + v (ytk-")I 

Estimating K, and KS using inequalities (4.31, we obtain 

v (yjk+l' _ yjk') < n#k 0’ = 1, 2) 

Pk = HIV (dkL’ - y!““) + Hap-‘-v (yik’ - y$“-I’) 

H, = M, + 2M&, H, = 2M, (3, + B,I+) 
Consider the number sequence pk (k = 1,2,...). The relation 

pk+l < Np-’ (tT, + m,) ,& (k = 1, 2, . . .) 

(4.6) 

where Np-'(Hl f 211,)+0 as p+ -t- 00, holds by virtue of (4.6). Therefore, a number pI> 0 
exists such that the inequality NC'(Ii,+ 2E,)g1/,.holds when p> p,. Let p > M - max (plr 

. 111). Then PHI < pk/l;! (k = i, 2, . . 
(z));; (f = 

.). Using this bound it can be proved that the sequences (~7) 
1,2) converge uniformly on the segment O<'F< 2b to some continuous functions 

Y? (2). Since by the construction of these sequences y!')(O) = yf" (2b)(I = 1,2; k = 0, 1, . ..). 

we have yf+ (0) = yj* (2b). Analogously, by virtue of (4.3). 

v (n') < B,P-'7 v (YS") Q B,P-' (4.7) 

Passing to the limit in relations (4.2) as k+m, we find that yl* (z)and y%* (7) is the solution 
of system (4.1), where the functionyr* ($15 twice continuously differentiable and dy,* (z)/& = 

Ya* (7). 
Let us prove the uniqueness of the solution found. Assume that system (4.1) has one more 

solution y# (T), Y%"(T) satisfying bounds (4.7). By the constructions described above, for the 
quantity p = H,v(y,* - l - yao) we can establish the inequality p < p/2. 
p = 0 and, consequently?')$~~~$ 1 2). 

hence 

Continuingyr* (r)along the whole re& axis, by using the relations y,* (z f 2b) = y,* (T), 
we obtain a 2b-periodic solution of Eq. (2.1). The desired solution z*(t, p) of Eq. (1.1) 
corresponds to this solution. The validity of Theorem 1 is established by recalling the 
method of choosingp, B1, B*,iU and transforming the bounds (4.7) into bounds for max 1 a,, (t,p) - 
cp (4 I, max 15’ (6 P) -q’(t) 1 for O< t < T. 

5. Equation (1.1) was interpreted as the equation of motion of a mechanical system with 
one degree of freedom. In the remaining part of this paper an analogous problem is solved 
for a system with several degrees of freedom. Theorem 2 proved below is, to a certain extent, 
a generalization of Theorem 1. 

We consider a mechanical system with 1 degrees of freedom, whose equations of motion can 

be written as 

d aT 
Yz7q -d$-=-p'e+Qj (j-1,2,. . .5 I) (5.1) 

Here ql, . . ., 4; are the system's generalized coordinates, p is a positive parameter, 

are generalized 

is the system's 

QJ - QJ (t, 91, . . ., qrq ql’, . . ., 91’) (i = 1, 2, . . ., 1) 

forces acting in the system, 

PL'lJ = pan (91, * . ., a). 
potential energy, and 

(5.2) 

(5.3) 

1 

c ajk(qlv. j, 4 

-*vdqj*qk + ~aj~t,n~,....ql)qj'+a.(t,q,....,gl) 

2=1 
(5.4) 

is its kinetic energy. We assume that in (5.4) the matrix (a&k,, does not contain t and is 
positive definite, the functions (5.2) and (5.4) depend 2x-periodically on t, and 1< n< 1 
in (5.3) and (5.4). An example of a mechanical system described by Eqs. (5.1) is a magnetized 
solid moving around the centre of mass in a strong constant magnetic field and subject to the 
additional action of periodic external moments. 

We seek periodic solutions of Eqs. (5.1), defined for fairly large p.. In order to 
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formulate the problem precisely, in (5.1) we will change to Routh variables 919 !7j $ qav Pa = 
dT#q’, (j= I, 2, . . ., n; a = n + 1, . . ., 1). These equations then take the form 

d aR aR 
Trapj’-apj=~ aqj 2an-Qj (_iE1ve**,@) (5.5) 

aR qa’ = - 
aPa * pe’=Qa @=n+1,...,1) 

Here 

2 n n 

R = c p+‘-T=-+z ajko (q) qi’qk’ + 
c 

bj (t, 19 q) qj’ + bo (t, 5, q) 
a=?%+1 1,k=1 *=1 

q = (q1, . . ., q”)=f = = tq*+1t . . *I PI9 Pnc1. . . *1 pi)T, and the matrix ~40 (q) = (a$$, a-, is positive 
definite. By appropriately introducing the functions F (& 5, 9, q’)E R*(‘+) and f(t, I, q. q’)G R”, 
Eqs. (5.5) become 

s* = F (d, 5, q9 4') (5.6) 

A0 (q)q" + p2 v = f (L&4, 43 

The resultant system is of independent interest since the equations of motion of certain 
mechanical systems reduce to the form (5.6) without the use of Routh variables. Below we 
examine Eqs. (5.6) without relating it to Eqs. (5.5). We assume that in (5.6) X and Ff 
R” (m >O),q and f= ff'(n> l),II E RI, F and f are 2n-periodically dependent on t, A0 (d 
is a symmetric positive-definite matrix of order n. The functions n (q), A0 (q), f (0, I, q, q’) and 
F&z, q,q’) are taken to be fairly smooth functions of their arguments, i.e., have all the 
derivatives needed for subsequent analysis. We assume as well that LJl'I (O)/aq = 0 and that the 
matrix @n(O)/@ is positive definite. 

The system 
I' = F (L, 2, 0, 0) 

is called degenerate. Suppose this system has a h-periodic solution s = q(t). We seek the 
In-periodic solutions z(t,p),q(t. p)of system (5.61, defined for values of ~1 fromsomeunbounded 
set IUC (0, + a! and satisfying as p+ + 00, PE 1, the relations 

P (t, P) = 0 (P), d (t, P) = 0 (p-l). 
s(t. P)-cp(t)=O(p-% 

In system (5.6) there may not be equations for x (m= 0). 
In this case we examine the system 

all (9) 
&(dq”-l-C ap ’ - = f (h (1*4’) (5.7) 

and seek its 2n-periodic solutions q&p), which, as pe +no, ~(EI~, satisfy the conditions 

9 (t, p) = CJ (rc-9, 9' (t? P) = 0 (p-1) * When n== i the existence of such solutions follow from Theorem 1. 
System (5.7) can be analyzed in the same was as system 15.6) (in the latter we must omit all 
sections referring to the vector x) and, therefore, we will not do so here. 

6. To construct the periodic solutions of system (5.6) we transform it as follows. We 
make the change of variables z = q(t)+ E 
&-' (q). 

and we multiply the second equation on the left by 

q and q’. 
In the resulting equations we pick out in explicit form certain terms linear in f, 
As a result we have 

Here 

E' = A (4 E + F, (t, E, 4. q') 
4” + P’Ahq = B PI E + c (4 q’ -I- A 09 E, q* q-1 + p’h, (q) 

(6.1) 

and the relations 

IIF, 0, E9 %Q’)ll = 0(11~11 + II Q’ II + II E II% II 4 (d II = 0 (II q IP) 
II fi 09 E, Q9 4’) - fi @3 07 09 0) II = 0 (II Q II -I- II !?’ IP + II E It? 

where II.11 is the Euclidean norm, are valid as E, q, q’+O. 
(0)/a? are symmetric and positive definite, 

Since the matrices Ao(0) and aSIT 

simultaneously reduced to canonical form. 
the quadratic forms corresponding to them can be 

More precisely, anon-singular matrix S exists 
such that 

STAo (0) S = E,,, ST,- S=diag(oIaE,,,, . . . , *SE,+) (6.2) 

Here Ek is the unit matrix of order k, nj> 0 (j = 1, 2, . . ., r), n, + n2 -+- . . . + TL, = n, 0 < ol ( 
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oq<...<o1 - Having made in (6.1) the change of variable q = Sq'and returning to the 
former notation, we will assume that the matrix A in this system is identical with the right- 
hand side of the second formula in (6.2). 

The following transformations are usual when investigating differential equations with a 
large parameter /1,3/. The substitution 

q = 2 + p*A-‘B (t) g 
reduces system (6.1) to 

E = A (t) 5 -I- Fz (t, 5, z, z*, CL) (6.3) 

where we have 
z" + $Az = C 0) z' + jz (L &, z, z', IL) + P% (t, f. z, P) 

Ii F2 V, 5, z, z', CL) II = 0 (II z II + II 2’ II + II I II2 + P-2 Ii 5 II) 

R f2 (h 1, z, z’, p) - f2 (k I4 II = 0 (II z II -t- II z’ II8 + II e I” + qy 

II fz” (t, 14 II = 0 (I). II h, (t, &, z, 1.4 II = 0 (II z II” + P II & IO 

as E, z, z’, fi--’ - 0. Here and below, for an arbitrary functiong (t,E, . .., . .., p) we use the 
notation $(t,p) = g(t,O, O,O,p). As a result of this substitution the term B(t)5 vanishes from 
the second equation of the system being investigated. 

The next transformation serves to simplify the term C(t)z’. Instead of z we introduce 
the new variable 

u = z + p-‘D (t) z’ (6.4) 

where D (t) is a 2n-periodic matrix. An explicit form for D(t) is indicated below. Different- 
iating relation (6.4) twice with respect to t relative to system (6.3), we obtain 

U' = -DAz + [E,, + p* (0' + DC)1 z' + D(& + p-j*) (6.5) 

U" = -p3h + (C - DA) z' + f; (t, 5, z, z', p) + $h, (6.6) 
The same bounds as for the function jz in (6.3) hold for the function jz' in (6.6) as 

&, 2, Z., p-4 0 . Having solved relations (6.4), (6.5) for z and z-with due regard to the 
equality h, (t, E, z, p) = hl (z) + 0 (tP), we find 

Z==U- pLI D {u' + D IAu - h, (@I) + 0 (p-') 

z’=u’+D[Au - k* (41 + 0 (p-v 
Substituting the resultant expressions into (6.6) and the first equation of (6.3), we 

arrive at the system 

Here 

5' = A (t) E + F, (t, E, U, u', P) (6.7) 

II" + P'AU = c' (t) u' + jz (t, E, U, u', p) + $h, (t, 5, u, u', p 

The estimates 
c' (t) =C(t)+AD(t)-D(t)A (6.8) 

II Fa (t, t, u, u-v 14 - Foe 0, 1.4 II =~(ll~II +IIu’II +llEIl’+ p*IIE,II) 

nh,(t,g,u,u’,r)--;lrlO(t,~)~- O(lu~‘+ ““fi+“;f+lsip + !!sLp) 

II F,O (t, p) II = 0 @-% II ht (t, P_) II = 0 (I’-‘) 

hold for the functions F, and h, as 6, u, u’, p--I-+0. The estimates for fs are obtained from 
those for fr by making the change z-u. z'-Li. 

We will represent the matrices C, C and D in block form, where the partitioning into 
blocks is the same as in the second formula of (6.2). Let C = (C&,x-l, C' = (C,;);,L-+ D = 
(Da)5. k-1, where Cjk. C/k’ and Djk are matrices of size no X nk. Then relation (6.8) can be 
written as 

cJk’ = CJ, + (@J’ - ok*) DJk (j, k = i, . . ., r) 

We define the matrix D(t) as follows. We set DJk = (ok” - o~‘)-‘C~~ for j # k and DJJ = 0. 
In this case D (t + 2~) = D (t) and 

C’ = disg (Cal, . . ., C,) 

The last transformation that has to be made is to replace the 2n-periodic matrix c' (t) 
in (6.7) by a constant matrix. Consider the matrix initial-value problems 
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X;=+cjj(t)Xj, Xj (0) = Enj (j = 1, . . . , r) 

According to Floquet's theorem the solutions of these problems can be written in the form 

Xj(.t)= ~j(t) exp(H#), Hj =& LnXj (2;1) 

@j (t + 2x) = @I (t) (j = 1, . .., r) 

If X,(zn) does not have negative eigenvalues, then the matrix HI can be chosen to be real. 
Otherwise, this, in general, cannot be done. We can always choose a real matrix Hj' = (41)-l Ln 
XI W, but then the matrix Q{(t)= X~(f)exp(-11jl) satisfies the relation @i (I + Zn) z @j (1) tij, 

where U, = XI (2a)exp (--2nHj), Uj2 = En,. The use of such 0,'(t) in the tranformations that follow, 
somewhat complicates the investigation of the Zrr-periodic solutions of system (5.6). As a 
result we have to solve either a periodic boundary-value problem in the interval O<t<4n 
(because @j(t+4n)= CD; (2)such an approach is simpler, but it can lead to a certain constriction 
on the set I,, mentioned in Section 5) or a boundary-value problem in the interval O<td& 
but not periodic, and with boundary conditions containing matrices IJ,. Below, for brevity 
we examine the case when real LnX,(2n) (j- 1,...,t.) exist. This occurs if, for example, system 
(5.6) is derived from Eqs. (5.1) in which the generalized forces (5.2) are potential forces. 

As a matter of fact, without loss of generality we will assume that in (5.6) the matrices 
A,(O) and Pll(O)/~3gz are identical with the right hand sides of formulas (6.2). Then in the case 

of potential forces (5.2) we must have c(t)=-c*(t) in (6.1). Hence Xj' (2~) = Xi-' (231) (j = 3, . ., r), 
i.e., the matrices Xj(&)are orthogonal, and detXj(Zn)=i. The eigenvalues of matrices Xj (2n) 
are located on the unit circle and have prime elementary divisors. The multiplicity of the 
eigenvalue -1 (if it exists) is even. In such a situation the matrices LnX,(2r) can always be 
chosen real. If the forces (5.2) are potential and T=R in (6.2), then C' (1) s 0 . In this case 
H, = 0, 0,(t)= 1 (j = 1, .( r). 

We set 
0 (t) = diag (a1 (t), . . ., 0, (t)), H = diag (H,, . . ., H,) 

The change of variable u = @(t)y converts (6.7) into the system 

5' = A (t) E + F, (G &, Y, Y', P) (6.9) 
. . 
Y - 2Hy' + ($A + H') Y = fi (6 Et Y, 1.9 14 + P% 0, &, Y, Y’, 14 

As E, y, y', p-l+0 estimates hold for the functions F,, f, and h,, analogous to the estimates 
of the functions F8, fs and h, as E, u, u', p-'--t 0. On the strength of these estimatespositive 
numbers 6, K and'pl exist such that for all t, p, E, TJ ('1 E Z?'"), y, Y', u, 1;' satisfying the 
inequalities 0 < t < 2n, p > ~1. and max (II f II, II '1 IL II Y IL II Y’ II, II u IL II Y’ II) < 8 we have 

II F,’ (f, 1.4 II < KP-‘, II fro (6 14 II Q K, II ho (t, 14 II Q P&I-* (6.10) 

II F4 (6 E, Y, Y’, 14 - Fd 6 rl, 11, us9 14 II < K (aI -t aI + Pa,) 

II f, (t, ET Y, Y’, 14 - fi (6 % 11, u’, PI II Q K [aI + B (a0 + ~41 
II h (1, t, I/, y’, 14 -ha (h rl, uL, u’v N II < 

K al+ ( =p)( ,Iy,,_t ,lu,,t_ IIY'ufU~'II+n5‘ll+IlsD 
P’ +G) 

a0 = II E - 11 II, al = II Y - ~1 II, a, = II 8’ - u’ II 

B = II E II + II rl II + II Y II + II u II + II Y’ II + II u’ II + P-f 
Having verified the transformations made above, we can convince ourselves that the independent 
variable t occurs 2n-periodically in system (6.9). The problem, posed in Section 5, of 
seeking 2n-periodic solutions of system (5.6) is equivalent to the problem of seeking 2n- 
periodic solutions e (t, k), Y(t, p) of system (6.9), defined for values of ~1 from same unbounded 
set I,C (0, -t 00) and satisfying as p+ + 00 p EZ,, the relations E (G P) = 0 (IL-% Y (C IL) = 
0 (p-9), Y' (C P) = Q WV 

Before we formulate the theorem for such solutions to exist we will introduce some 
definitions. Let P be a kth-order square matrix with eigenvalues &, . . . . h,. We introduce 
the function 

A@, P,v)=(det[shn(P + ipE,)]I= {fi [d+(aRekj)+ sin*n(p + Imhj)l)'l 
j=l 

For an arbitrary E>O we consider the set 

I (e) = {p : p 20, A (nj, HJ, pq) > e (j = 1, . . ., r)) 
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Each function A@,, Hj, p~,)is periodic in CL. Therefore, a number E, >O exists such that 
for 0 < e < s,,either I (e) = IO, + 00) or 

I(s) "kol[& (e)V pk (e)h O<R@) SSBt(e) <~z@)\(Bs(E) <. . 

o< h<E@k(e) -a,(E)]<& < + 00 

and the numbers 1, and 1% can be chosen to be independent of E. The first or the second 
these possibilities is realized depending on whether all or not all eigenvalues of the 
matrices Hj(j =I, . . ..I-) have non-zero real parts. 

of 

Theorem 2. Assume that the system 
E’=A 

does not have non-zero 2n-periodic solutions. 
C, and M exist such that for p > M, p E r(t), 
E*(b P). Y* (t, Cc) satisfying the inequalities 

(0 (6.11) 

Then for any ee(O,e,) positive numbers Co, C,, 
system (6.9) has a unique 2n-periodicsolution 

7. In this section we derive certain relations which will be useful in proving Theorem 
2. Let us consider the linear inhomogeneous system 

5' = A (t) f + F (t) (7.1) 

where F(t) is a 'kc-periodic function, corresoonding to the first equation in (6.9). By the 
hypothesis of Theorem 2 (the absence of non-trivial%-periodic solutions in (6.11) this 
system has the unique 2n-periodic solution 

fW=zfGo(4V(~)dr (7.2) 

Here G,(t,r) is Green's function for the pkiodic boundary-value problem e (0) - e (W for 
(7.1). 

The norm of the vector function f(t) continuous in the interval 10, 2n] is the number 
v v) = mar/ f(t)11 bar 0 < t( 2~. The estimate 

v (D Q Nov (0 (7.3) 

where Nb is some positive number, holds for the norm of solution (7.2). 
Let us now consider the linear equation 

;. 
Y -=Y-+(P'A+IP)Y -f(t) (7.4) 

where f(t) is a k-periodic function, corresponding to the second equation in system (6.9). 

If A (nj, Hj, W) > 0 0' = 1, . . ., rh then this equation has the unique !&-periodic solution 

Y (0 - G (t. T) f (r) dr - (A&)-’ f (t) + TG’ (t. 4 f’ (r) h 
0 0 

WJ)=-+[(h -_hr) shnA~,l-iexp[A~(t-~fn)] +idem(l*2) 

G' (&T)== - + [(AI - Ax) AI ah tit]" erp [Al (t - T f n)] + idem (i ++ 2) 

A 1,*--*+-J. Q -diae(ol E,,...,Q,+) 

(7.5) 

Here G&T) is Green's function of the boundary-value problem Y(O) -Y(&), y'(0) - Y'(&) for 
(7.4) ; in the expressions for G (t, T) and G’ (t, 2). idrrn <* ~2) denotes the summands obtained from 
the summands explicitly written out by the substitution At- 4; the upper signs in these 
expressions are taben when :<f and the lower when f)?. To derive formulas (7.5) w= 
should notice that the matrices a, P, A, and A, cam&e with each other and the general 
solution of Eq.(7.4) with f(t) -0 has the form y-exp(A&o,+sxp(A&)%, where sir + 
are arbitrary constant vectors. 

The derivative of solution (7.5) can be found from the formula 

The number 
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is called the norm of an arbitrary matrix P =@j&1. Using this concept, we obtain the 
estimates 

v (SC) < &v V), v (i/3 < KP v) (7.6) 

v (Y) d Z&v(f) + &v v)t v (P') < &v (f) 

fox the norms of solution (7.5) and of its derivative. Here the coefficients K1, K, and KI 
equal the maximum values, multiplied by h, of the functions IIG(t, @)I, Ij@(t, r)/&li and 
11 G’ (t, 9) 11 on the set {t, T : t, T E 10&d, t f z), K, = 1 &‘A~-‘II. Let us estimate these coef- 
ficients. Since H and 56 are block diagonal‘matrices, the matrix G(t, Z) too is blockdiagonal 
with blocks of the same sizes and has the form 

G (t, z) = diag (G, (t, ~1, . . ., G, 0, z)) 

where G,(t, T) is specified by the second formula in (7.5) with Al,e = Hi rt ipaj E,, (j = I,.. 

.t r). It can be proved that 

Here d(k, P) is some positive scalar function of the kth-order square matrix P. Since 

fox ~1 EZ (e), p >O , we have 

II G &4 II’ = iI II Gj (6 4 II’ 

' ' d. ZVfp 
z I' d. ) = Oied’ (nj, Hj) 
P-1 

Analogously, fox FEZ, p>O, we can establish the estimates 

where P, = p-‘H, + iojE,,j. Since the matrix HI is real, IIP~lf’ = 01%) +p*IIH,Il’. Expanding 
the matrix P.-l in series in powers of , p-1, we can prove that11 Pj’)I <(vr, + 4)/o, fox p > 

2 ll.H, Illoj. From the estimates indicated it follows that positive numbers N and p* exist 
such that when p> p,, PE Z (E), the inequalities K, < lVp--', K,<N, Ka < Np”, K, <Np* axe 
satisfied. From this and (7.6) we obtain the estimates 

v (v) < W4 U-L v (v') < NV cf) (7.7) 

v (I) d W' (v 0 + v (f)), v (v') < NP-4 (f) (7.8) 

fox the norms of solution (7.5) and of its derivative. Below, unless otherwise stated,it is 
assumed that p E Z (e) and p > pX > max(1, pt). 

8. The search fox 2n-periodic solutions of system (6.9) reduces to solving the periodic 
boundary-value problem fox this system in the interval IO, %I, which in turn is equivalent 
to the system of intexgxal equations 

E(t) =PSIG,(t,~)~4(~,&(~),111(~),ul(T),ll)d~E~~,bll, VA (8.1) 

y,(t)=)4 g,(t,~)[f,(~,E(T),I11(7), sra(+P) + 

P'k(ro, 6(r)v Vl(~)*PS(~)*~)]dTE Lj(E* Yl* 112) 

i = 1,2; g, (t, r) ,’ G (t, z), g, (t, r) = aG (t, r)lat 

H-e n - Y, ih = Y’. System (8.1) is solved by the method of successive approximations. In 
the interval O< t(2n we construct sequences of functions .& WL tuj"'(WLci - 1, 2), 
having set 

E'O' (t) = 0, yj(O) (t) SS 0 (8.2 

Et*+0 = #& @0*#, #') 

0' = 1, 2; k = O,i, 2, : 

#+I) =Lj &k', #', #) 

. .) 

Let US prove that fox fairly large p these sequences converge to the solution of system 
(8.1). 

First we will prove that positive numbers Co, cl, c, and p,(p,> pl)exist such that the 
inequalities 
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v (Vk)) < Cop-l < 6, v (Yik’) Q clpa Q 6 
v (ySk’) < c,p < 6 (k = 0, 1, . . .) 

(8.3) 

hold for p> pa. The proof of this assertion is analogous to that of inequalities 
(4.3) and is carried out using the estimates (7.7), (7.8) and estimates (6.10) in the case 
when '1 ~0, u =E(* ==O+ we introduce the notation 

ak = Y(?$) -E(J+I'), b, = v (yik' - vi”-“), ek=v(yf) - yy-") 

On the strength of inequalities (6.101, (7.7) and (8.3), when p> MS we have 

ak+l< x ($+b,+%). bk+,<$(+++bk) (8.4) 

ck+l < x 
( 

F+bk) (k=1,2,...) 

x = K [I + 2 (C, + C1 + C31 max (N,, 2N) 

Consider the number sequence pk =ak@ + bk + ckp-l (k = i,2,...). As a consequence of 
(8.41, pk+l < hrc”‘?k (k = 4, 2 ..). 

pk+l< pk/2 (k - 1, 2,...)is valid. 
We set M = max(M,, 36x*). Then when pL>M the estimate 

Using this estimate it can be proved that thesequences (W 

(%e, Iul"' (t)& v = 1,2) converge uniformly in the interval [O, 2d to certain continuous 
functions &* 0)s II)* 0) - The relations 

E' (0) = &* (as), !,J* (0) = !,j* (b) (j = 1, 2) 

v ce*, < C,T’I v (srl,) < C,P, v (yz*) g c,p 

hold. Passing to the limit in (8.2) as k + m, we find that E* (t), n*(t) and y,* (t) is the 
solution of system (8.1). The function c* (t) is continuously differentiable, the function 
y,* (t) is twice continuously differentiable, and &* (t)/& = y**(f). Exactly as in the proof 

of Theorem 1 we can establish that the solution found is unique. Having continued the functions 

f.1 bc1* 2s -periodically along the whole real axis, we obtain the desired periodic solution 
of’ system (6.9). 

The author thanks V. A. Sarychev for useful discussions. 
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THE HAMILTON-JACOBI EQUATION IN DOMAINS 
OF POSSIBLE MOTIONS WITH A BOUNDARY* 

R.M. BULATOVICH 

The problem of the existence of solutions of the truncated Hamilton-Jacobi 
equation in the whole domain of possible motions with a boundary is 
investigated. Constraints on the topology of the domains of possible 
motions, in which the Hamilton-Jacobi equation is solvable in the large, 
are pointed out. In particular, the boundary cannot be connected. 
The existence of solutions in the whole domain of possible motions is 
obstructed by focal points at which infinitely close trajectories leaving 
the boundary intersect. A connection between the complete integral of 
the Hamilton-Jacobi equation and the particular solutions in the neigh- 
hourhood of the boundary is indicated. 

*prikl.Matem.Mekhan.,47,5,720-727,1983 


